

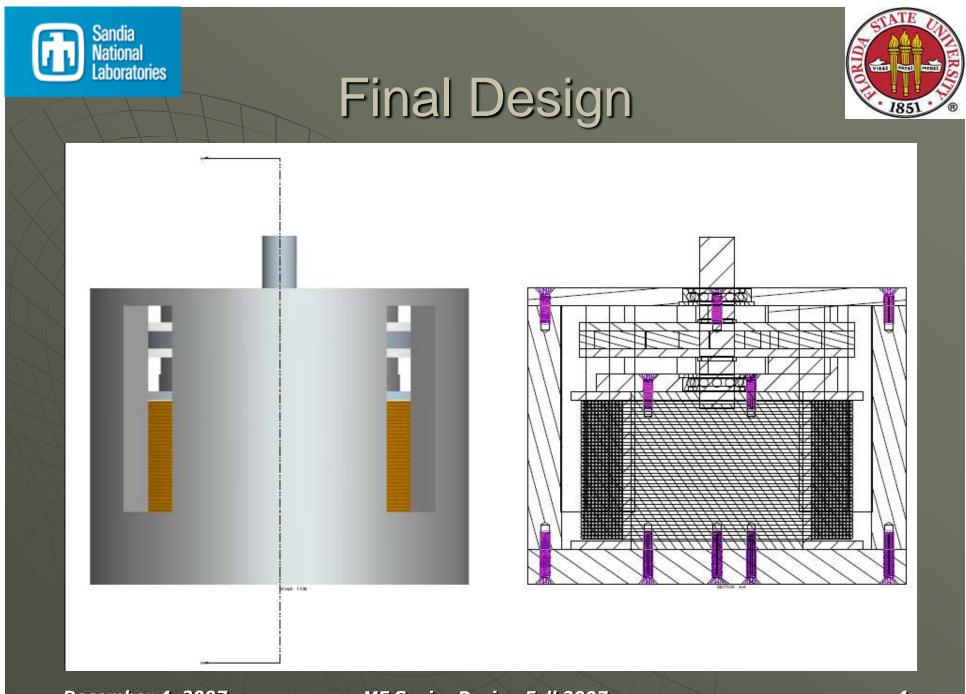
Bi-Directional Rotary Actuator

Group 9 Sung Bae Robert Hooge Chris Imparato Jose Jaramillo

December 4, 2007

Scope

• Design a bi-directional rotary actuator

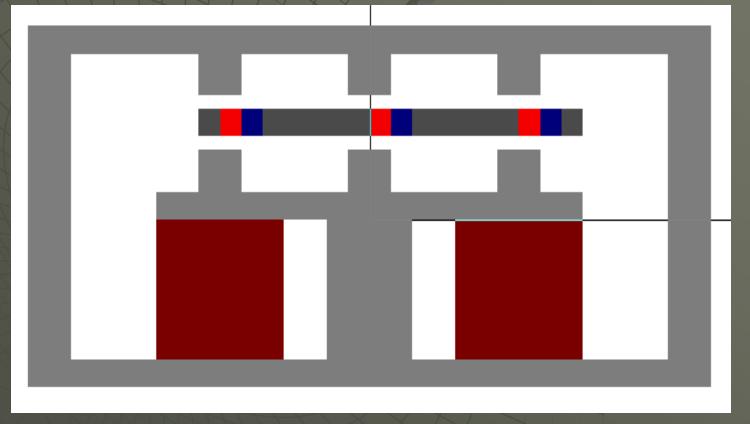

- Compact and easy to assemble
- Rotates either clockwise or counterclockwise with a return to a neutral position
- Electro-magnetic with a permanent magnet rotor
- Takes full advantage of maximum moment arm availability (pancake style)
- Single coil design
- Directionality is controlled by coil polarity

Constraints/Goals

Rotor must be 2" in diameter
No springs to return to neutral position
Torque must be 0.31Nm or greater
Step size of 20° - 30°

December 4, 2007

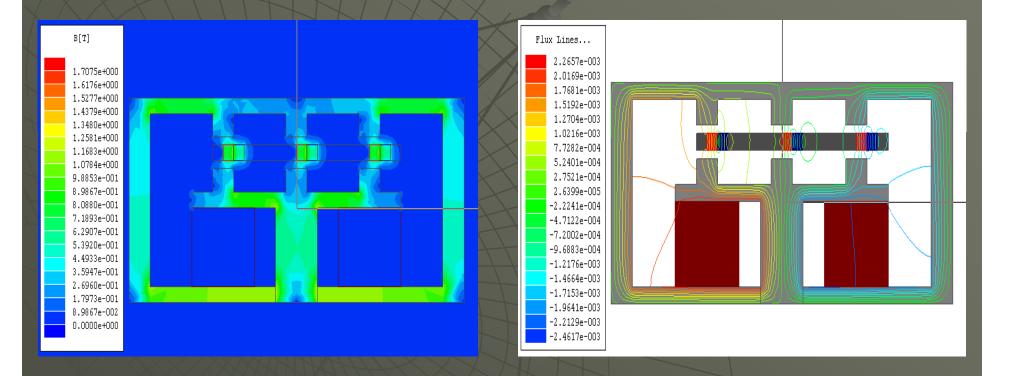
Major changes • Cylindrical housing Uniformly distributed magnetic field Inner magnets used. • Helped to increase torque. Changed from 4 poles to 3 Taller coil • Lowered current density • Distributed temperature over larger area.


December 4, 2007

2-D Simulation

Using Maxwell 2-D SV

Off Position (No Current)



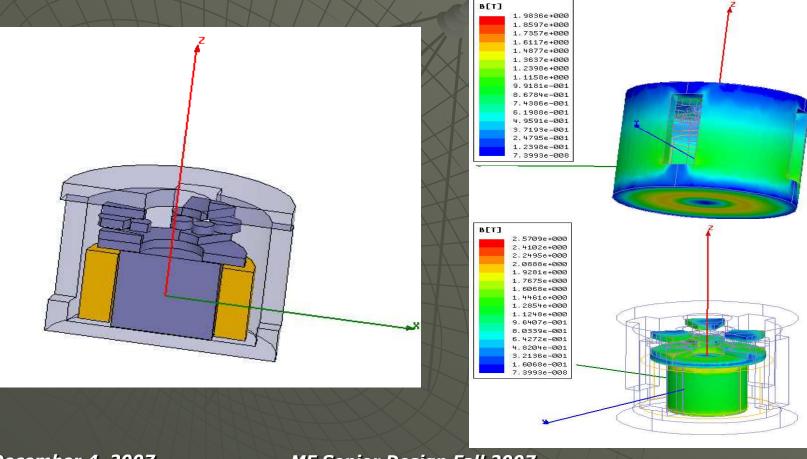
December 4, 2007

2-D Simulation

On Position (1500A)

Shading in above figure represents magnetic field, lines represent magnetic flux

December 4, 2007



3-D Simulation

Using Maxwell 3-D

De-Energized

Energized

December 4, 2007

Thermal Modeling

Surface Temperature
Surrounding objects.
Safety.
Determined materials used for coil.

Temperature[C] 7.1566e+001 7.1124e+001 7.0683e+001 7.0241e+001 6.9799e+001 6.9358e+001 6.8916e+001 6.8474e+001 6.8033e+001 6.7591e+001 6.7149e+001 6.6708e+001 6.6266e+001 6.5824e+001 6.5383e+001 6.4941e+001 6.4499e+001

E-Physics

Thermal Calculations

 $L(t) := [2 \cdot \pi \cdot (0.70 + 0.0251 \cdot t)] in$ L = 231.594 ft

Current in the coil (Ampere turns)	$I_{coil} \coloneqq 1500A$	
Resistivity of Copper	$\rho := 1.67 \cdot 10^{-8} \Omega \cdot m$	
Current Density is given by	$J := \frac{I_{coil}}{A_{cross}}$	$J = 6.2 \frac{A}{mm^2}$
Resistance of wire	$R := \frac{\rho \cdot L}{A_{\text{wire}}}$	$R = 3.722 \ \Omega$
Power Supply current required	$I_{supply} := \frac{J \cdot A_{wire}}{\frac{\pi}{4}}$	I _{supply} = 2.5 A
Power Supply voltage required	$V := I_{supply} \cdot R$	V = 9.306 V
Heat Generated by Coil	$P := I_{supply}^{2} \cdot R$	P = 23.265 W

December 4, 2007

Sandia National Laboratories	5	B	uc	lge	et	
Part	Part No.	Description	Quantity	Unit Price	Total Price	Supplier
Bottom Housing Outer Structure Lower Stator Upper Stator	8279T221	1045 Medium Carbon Steel 2- 3/4" x 12" Rod	1	\$54.23	\$54.23	<u>McMaster-Carr</u>
Steel Rod	8924K311	1045 Medium Carbon Steel 1- 1/4" x 12" Rod	1	\$10.74	\$10.74	<u>McMaster-Carr</u>
Rotor Core	9042K1	Aluminum 6062 2" x 1" Disc	1	\$6.84	\$6.84	<u>McMaster-Carr</u>
Rotor Caps	8589K21	Cast Acrylic 12" x 12" Sheet	1	\$2.54	\$2.54	McMaster-Carr
Coil Spool	7662K14	Polyetherimide 2.5" x 3" Rod	1	\$38.95	\$38.95	McMaster-Carr
Copper Wire	8873K19	22AWG Insulated Copper Wire	2	\$9.65	\$19.30	http://www.action-electronics.com/magnetwire.htm
Shoulder Bearing	4259T15	SS Flanged Ball Bearing ID 0.25", OD 0.50"	2	\$14.12	\$28.24	<u>McMaster-Carr</u>
Snap Ring	91590A113	SS Snap Ring 0.25" x 0.025" 10 Pack	1	\$7.50	\$7.50	<u>McMaster-Carr</u>
Flat Head Screw	91771A068	1-64 UNC x 0.375" 100 Pack	1	\$12.29	\$12.29	McMaster-Carr
Flat Head Screw	91771A066	1-64 UNC x 0.25" 100 Pack	1	\$11.48	\$11.48	McMaster-Carr
Magnets		Neodymium 0.25" x 0.125"	6	\$30.00	\$30.00	magnetmasters.com
		Neodymium 0.375" x 0.125"	6	\$30.00	\$30.00	magnetmasters.com
Power Supply	14604 PS	0-30VDC @ 0-10A Constant Voltage or Current	1	\$169.99	\$169.99	powersupplydepot.com
JB Weld High Temp	8265-S	Metal to Acrylic Adhesive	2	\$5.53	\$11.06	McMaster-Carr
Fan	S35-1090	120mm Case Fans	4	\$9.99	\$39.96	tigerdirect.com
Machining	-	Possible CNC work	1	\$500.00	\$500.00	
Shipping	-	Shipping Charges	1	\$200.00	\$200.00	
Total December 4	-	- ME Sen	-	-	\$1,173.12	12

Plan for Spring '08

X.			<			
ID		Task Name	Durat	Start	Finish	1st Quarter
	0					TFSSNTVTFSSNTVTFSSNTVTFSSNTVTFSSNTVTFSSNTVTF
1	11	Order Parts	7 da	Thu 12	Fri 12/′	
2		Winter Break	16 da	Mon 12,	Mon 1	
3		Fabrication	26 da	Tue 1/	Tue 2/1	
4	11	Prepare Detailed Drawii	1 d	Tue 1/	Tue 1/	
5		Begin Machining	1 d	Wed 1	Wed 1	
6		Machine Time	22 d;	Thu 1/ [,]	Fri 2/8	
7		Final Assembly	2 da	Mon 2/	Tue 2/ [,]	
8		Testing	23 da	Wed 2/ [,]	Fri 3/1	
9	11	Initial Test (Assuming P	1 d	Wed 2/	Wed 2/	
10		Analysis of Tests	5 da	Thu 2/ [,]	Wed 2/	
11		Modify Testing	7 da	Thu 2/2	Fri 2/2	
12		Spring Break	6 da	Mon 3,	Mon 3/	
13		Re-Test	4 da	Tue 3/ [,]	Fri 3/1	
14		Reporting	9 da	Mon 3/'	Thu 3/2	
15		Final Testing Analysis	5 da	Mon 3/	Fri 3/2	
16		Final Reports	4 da	Mon 3/:	Thu 3/2	
17		Operations Manual	4 da	Mon 3/2	Thu 3/2	
18		Final Presentations and O	13 da	Tue 3/2	Thu 4/	

December 4, 2007

Questions?

December 4, 2007